The zeta function of $\mathfrak{g}_{1357 B}$ counting ideals

1 Presentation

$\mathfrak{g}_{1357 B}$ has presentation

$$
\left\langle\begin{array}{l|l}
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} & \begin{array}{c}
{\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5},\left[x_{1}, x_{5}\right]=x_{7},} \\
{\left[x_{2}, x_{3}\right]=x_{5},\left[x_{3}, x_{4}\right]=-x_{7},\left[x_{3}, x_{6}\right]=x_{7}}
\end{array}
\end{array}\right\rangle .
$$

$\mathfrak{g}_{1357 B}$ has nilpotency class 4 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{1357 B}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5) \zeta_{p}(7 s-4) \\
& \times \zeta_{p}(9 s-6) \zeta_{p}(11 s-10) \zeta_{p}(16 s-11) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1-X^{4} Y^{8}+X^{5} Y^{8}-X^{5} Y^{9}-X^{9} Y^{11}+X^{9} Y^{12}-X^{10} Y^{12}-X^{10} Y^{16} \\
& +X^{10} Y^{17}-X^{11} Y^{17}+X^{14} Y^{19}-X^{15} Y^{19}+X^{15} Y^{20}+X^{15} Y^{25}+X^{19} Y^{27} \\
& -X^{19} Y^{28}+X^{21} Y^{28}-X^{25} Y^{36}
\end{aligned}
$$

$\zeta_{\mathfrak{g}_{1357 B}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies no functional equation.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{1357 B}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5) \zeta_{p}(7 s-4) \zeta_{p}(9 s-6) \\
& \times \zeta_{p}(11 s-10) \zeta_{p}(16 s-11) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{10} Y^{12}, \\
& W_{2}(X, Y)=-1-X^{5} Y^{7}, \\
& W_{3}(X, Y)=-1+X^{6} Y^{9}, \\
& W_{4}(X, Y)=1-X^{4} Y^{8} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{1357 B}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=5 / 6$, and is of type III.

$7 \quad$ Notes

This ideal zeta function is identical to that of $\mathfrak{g}_{1357 C}$, though the Lie rings themselves are non-isomorphic.

