The zeta function of \mathfrak{g}_{147B} counting ideals

1 Presentation

 \mathfrak{g}_{147B} has presentation

$$\left\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \, \middle| \, \begin{array}{c} [x_1, x_2] = x_4, [x_1, x_3] = x_5, [x_1, x_4] = x_7, \\ [x_2, x_6] = x_7, [x_3, x_5] = x_7 \end{array} \right\rangle.$$

 \mathfrak{g}_{147B} has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{\mathfrak{g}_{147B},p}^{\lhd}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(s-3)\zeta_p(3s-4)\zeta_p(3s-5)\zeta_p(5s-8) \times \zeta_p(7s-6)\zeta_p(6s-8)^{-1}.$$

 $\zeta_{\mathfrak{g}_{147B}}^{\lhd}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left.\zeta^{\lhd}_{\mathfrak{g}_{147B},p}(s)\right|_{p\to p^{-1}}=-p^{21-16s}\zeta^{\lhd}_{\mathfrak{g}_{147B},p}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{147B}}^{\triangleleft}(s)$ is 4, with a simple pole at s=4.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta_{\mathfrak{g}_{147B}}^{\lhd}(s)$ has meromorphic continuation to the whole of \mathbb{C} .

7 Notes

This ideal zeta function is identical to that of $\mathfrak{g}_{147A},$ though the Lie rings themselves are non-isomorphic.