The zeta function of g_{157} counting ideals

1 Presentation

 \mathfrak{g}_{157} has presentation

$$\left\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \middle| \begin{array}{c} [x_1, x_2] = x_3, [x_1, x_3] = x_7, \\ [x_2, x_4] = x_7, [x_5, x_6] = x_7 \end{array} \right\rangle.$$

 \mathfrak{g}_{157} has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{g_{157,p}}^{\lhd}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(s-3)\zeta_p(s-4)\zeta_p(3s-5)\zeta_p(7s-6).$$

 $\zeta_{\mathfrak{g}_{157}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\zeta_{\mathfrak{g}_{157,p}}^{\lhd}(s)\big|_{p\to p^{-1}} = -p^{21-15s}\zeta_{\mathfrak{g}_{157,p}}^{\lhd}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{157}}^{\lhd}(s)$ is 5, with a simple pole at s = 5.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta^\lhd_{\mathfrak{g}_{157}}(s)$ has meromorphic continuation to the whole of $\mathbb{C}.$