The zeta function of \mathfrak{g}_{17} counting ideals

1 Presentation

\mathfrak{g}_{17} has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \mid\left[x_{1}, x_{2}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{7},\left[x_{5}, x_{6}\right]=x_{7}\right\rangle
$$

\mathfrak{g}_{17} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal \& Smith. It is

$$
\zeta_{\mathfrak{1}_{17}, p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(s-5) \zeta_{p}(7 s-6) .
$$

$\zeta_{\mathfrak{g}_{17}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{17}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{21-13 s} \zeta_{\mathfrak{g}_{17}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{17}}^{\triangleleft}(s)$ is 6 , with a simple pole at $s=6$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{g}_{17}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

