The zeta function of \mathfrak{g}_{17} counting ideals

1 Presentation

 \mathfrak{g}_{17} has presentation

 $\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \mid [x_1, x_2] = x_7, [x_3, x_4] = x_7, [x_5, x_6] = x_7 \rangle$

 \mathfrak{g}_{17} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal & Smith. It is

$$\zeta_{\mathfrak{g}_{17},p}^{\triangleleft}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(s-3)\zeta_p(s-4)\zeta_p(s-5)\zeta_p(7s-6).$$

 $\zeta_{\mathfrak{g}_{17}}^{\lhd}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left. \zeta^{\triangleleft}_{\mathfrak{g}_{17},p}(s) \right|_{p \to p^{-1}} = -p^{21-13s} \zeta^{\triangleleft}_{\mathfrak{g}_{17},p}(s)$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{17}}^{\triangleleft}(s)$ is 6, with a simple pole at s = 6.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta^{\lhd}_{\mathfrak{g}_{17}}(s)$ has meromorphic continuation to the whole of \mathbb{C} .