The zeta function of $\mathfrak{g}_{257 A}$ counting ideals

1 Presentation

$\mathfrak{g}_{257 A}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \left\lvert\, \begin{array}{c}
{\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{6}} \\
{\left[x_{1}, x_{5}\right]=x_{7},\left[x_{2}, x_{4}\right]=x_{6}}
\end{array}\right.\right\rangle
$$

$\mathfrak{g}_{257 A}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{257 A}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-5) \zeta_{p}(5 s-6) \zeta_{p}(5 s-8) \\
& \times \zeta_{p}(7 s-9) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
1+X^{4} Y^{3}-X^{9} Y^{8}-X^{13} Y^{10}
$$

$\zeta_{\mathfrak{g}_{257 A}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies no functional equation.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{257 A}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-5) \zeta_{p}(5 s-6) \zeta_{p}(5 s-8) \zeta_{p}(7 s-9) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{4} Y^{3} \\
& W_{2}(X, Y)=1-X^{9} Y^{7}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{257 A}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=4 / 3$, and is of type III.

7 Notes

This ideal zeta function is identical to that of $\mathfrak{g}_{257 C}$, though the Lie rings themselves are non-isomorphic.

