The zeta function of $\mathfrak{g}_{257 \mathrm{~K}}$ counting ideals

1 Presentation

$\mathfrak{g}_{257 \mathrm{~K}}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \left\lvert\, \begin{array}{l}
{\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{5}\right]=x_{6},} \\
{\left[x_{2}, x_{5}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{6}}
\end{array}\right.\right\rangle .
$$

$\mathfrak{g}_{257 K}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{257 K}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(4 s-4) \zeta_{p}(5 s-5) \\
& \times \zeta_{p}(6 s-5) \zeta_{p}(7 s-6) \zeta_{p}(7 s-8) \zeta_{p}(9 s-10) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1-X^{4} Y^{5}-X^{5} Y^{7}-X^{8} Y^{9}-X^{8} Y^{10}+X^{8} Y^{11}-X^{10} Y^{11}+X^{9} Y^{12}+X^{12} Y^{13} \\
& -X^{13} Y^{13}+X^{13} Y^{14}+2 X^{13} Y^{15}-X^{14} Y^{15}-X^{13} Y^{16}+2 X^{14} Y^{16}+X^{14} Y^{17} \\
& -X^{14} Y^{18}+X^{15} Y^{18}+X^{18} Y^{19}-X^{17} Y^{20}+X^{19} Y^{20}-X^{19} Y^{21}-X^{19} Y^{22} \\
& -X^{22} Y^{24}-X^{23} Y^{26}+X^{27} Y^{31}
\end{aligned}
$$

$\zeta_{\mathfrak{g}_{257 K}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{257 K}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{21-14 s} \zeta_{\mathfrak{g}_{257 K}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{257 K}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(4 s-4) \zeta_{p}(5 s-5) \zeta_{p}(6 s-5) \\
& \times \zeta_{p}(7 s-6) \zeta_{p}(7 s-8) \zeta_{p}(9 s-10) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{13} Y^{13}, \\
& W_{2}(X, Y)=-1+X^{6} Y^{7}, \\
& W_{3}(X, Y)=1-X^{3} Y^{4}, \\
& W_{4}(X, Y)=-1+X^{5} Y^{7} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{257 K}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=1$, and is of type II.

7 Notes

The Lie ring $\mathfrak{g}_{257 K}$ is isomorphic to the central amalgamation of the free class-3-nilpotent 2-generator Lie ring $F_{3,2}$ with the Heisenberg Lie ring H.

