The zeta function of \mathfrak{g}_{27B} counting ideals

1 Presentation

 \mathfrak{g}_{27B} has presentation

$$\left\langle x_1, x_2, x_3, x_4, x_5, x_6, x_7 \,\middle|\, \begin{array}{l} [x_1, x_2] = x_6, [x_1, x_5] = x_7, \\ [x_2, x_3] = x_7, [x_3, x_4] = x_6 \end{array} \right\rangle.$$

 \mathfrak{g}_{27B} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{\mathfrak{g}_{27B},p}^{\triangleleft}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(s-3)\zeta_p(s-4)\zeta_p(5s-5)\zeta_p(5s-6) \times \zeta_p(7s-10)\zeta_p(10s-10)^{-1}.$$

 $\zeta_{\mathfrak{g}_{27B}}^{\lhd}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left.\zeta_{\mathfrak{g}_{27B},p}^{\triangleleft}(s)\right|_{p\to p^{-1}}=-p^{21-12s}\zeta_{\mathfrak{g}_{27B},p}^{\triangleleft}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{27B}}^{\lhd}(s)$ is 5, with a simple pole at s=5.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta_{\mathfrak{g}_{27B}}^{\lhd}(s)$ has meromorphic continuation to the whole of \mathbb{C} .