The zeta function of $\mathfrak{g}_{37 D}$ counting ideals

1 Presentation

$\mathfrak{g}_{37 D}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \left\lvert\, \begin{array}{l}
{\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{7},} \\
{\left[x_{2}, x_{4}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{6}}
\end{array}\right.\right\rangle .
$$

$\mathfrak{g}_{37 D}$ has nilpotency class 2 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{37 D}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-5) \zeta_{p}(5 s-6) \zeta_{p}(6 s-10) \\
& \times \zeta_{p}(7 s-12) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
1+X^{4} Y^{3}+X^{8} Y^{6}+X^{9} Y^{6}-X^{9} Y^{8}-X^{10} Y^{8}-X^{14} Y^{11}-X^{18} Y^{14}
$$

$\zeta_{\mathfrak{g}_{37 D}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{37 D}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{21-11 s} \zeta_{\mathfrak{g}_{37 D}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{37 D}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-5) \zeta_{p}(5 s-6) \zeta_{p}(6 s-10) \zeta_{p}(7 s-12) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{9} Y^{6}, \\
& W_{2}(X, Y)=1-X^{9} Y^{8} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{37 D}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=3 / 2$, and is of type III.

