The zeta function of $F_{2,3}$ counting ideals

1 Presentation

$F_{2,3}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[x_{1}, x_{2}\right]=y_{1},\left[x_{1}, x_{3}\right]=y_{2},\left[x_{2}, x_{3}\right]=y_{3}\right\rangle .
$$

$F_{2,3}$ has nilpotency class 2 .

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal \& Smith. It is

$$
\zeta_{F_{2,3}, p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-5) \zeta_{p}(5 s-8) \zeta_{p}(6 s-9) W\left(p, p^{-s}\right)
$$

where $W(X, Y)$ is

$$
1+X^{3} Y^{3}+X^{4} Y^{3}+X^{6} Y^{5}+X^{7} Y^{5}+X^{10} Y^{8}
$$

$\zeta_{F_{2,3}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{F_{2,3}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-9 s} \zeta_{F_{2,3}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{F_{2,3}}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-5) \zeta_{p}(5 s-8) \zeta_{p}(6 s-9) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{7} Y^{5} \\
& W_{2}(X, Y)=1+X^{3} Y^{3}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{F_{2,3}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=7 / 5$, and is of type III.

