The zeta function of $F_{2,3}$ counting all subrings

1 Presentation

$F_{2,3}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[x_{1}, x_{2}\right]=y_{1},\left[x_{1}, x_{3}\right]=y_{2},\left[x_{2}, x_{3}\right]=y_{3}\right\rangle
$$

$F_{2,3}$ has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Gareth Taylor. It is

$$
\begin{aligned}
\zeta_{F_{2,3}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-4) \zeta_{p}(2 s-5) \zeta_{p}(2 s-6) \zeta_{p}(3 s-6) \\
& \times \zeta_{p}(3 s-7) \zeta_{p}(3 s-8) \zeta_{p}(4 s-8)^{-1} W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{3} Y^{2}+X^{4} Y^{2}+X^{5} Y^{2}-X^{4} Y^{3}-X^{5} Y^{3}-X^{6} Y^{3}-X^{7} Y^{4}-X^{9} Y^{4} \\
& -X^{10} Y^{5}-X^{11} Y^{5}-X^{12} Y^{5}+X^{11} Y^{6}+X^{12} Y^{6}+X^{13} Y^{6}+X^{16} Y^{8}
\end{aligned}
$$

$\zeta_{F_{2,3}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{F_{2,3}, p}(s)\right|_{p \rightarrow p^{-1}}=p^{15-6 s} \zeta_{F_{2,3}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{F_{2,3}}(s)$ is $7 / 2$, with a simple pole at $s=7 / 2$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-5) \zeta_{p}(2 s-6) \zeta_{p}(3 s-6) \zeta_{p}(3 s-7) \zeta_{p}(3 s-8) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{5} Y^{2}, \\
& W_{2}(X, Y)=1-X^{7} Y^{3}, \\
& W_{3}(X, Y)=-1-X^{4} Y^{2}, \\
& W_{4}(X, Y)=-1+X^{4} Y^{3} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{F_{2,3}}(s)$ has a natural boundary at $\Re(s)=5 / 2$, and is of type III.

7 Notes

An excellent calculation by Gareth Taylor gave us this example, the first at class 2 where the abscissa of convergence exceeds the rank of the abelianisation.

Previously, the sign in the functional equation was believed to be negative. This is not the case.

