The zeta function of $F_{3,2} \times \mathbb{Z}$ counting ideals

1 Presentation

$F_{3,2} \times \mathbb{Z}$ has presentation

$$
\left\langle x_{1}, x_{2}, y, a, z_{1}, z_{2} \mid\left[x_{1}, x_{2}\right]=y,\left[x_{1}, y\right]=z_{1},\left[x_{2}, y\right]=z_{2}\right\rangle .
$$

$F_{3,2} \times \mathbb{Z}$ has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{F_{3,2} \times \mathbb{Z}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-3) \zeta_{p}(4 s-4) \zeta_{p}(5 s-5) \zeta_{p}(5 s-6) \\
& \times \zeta_{p}(7 s-8) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
1+X^{3} Y^{4}-X^{3} Y^{5}-X^{6} Y^{7}-X^{8} Y^{9}-X^{11} Y^{11}+X^{11} Y^{12}+X^{14} Y^{16}
$$

$\zeta_{F_{3,2} \times \mathbb{Z}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{F_{3,2} \times \mathbb{Z}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-11 s} \zeta_{F_{3,2} \times \mathbb{Z}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{F_{3,2} \times \mathbb{Z}}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-3) \zeta_{p}(4 s-4) \zeta_{p}(5 s-5) \zeta_{p}(5 s-6) \zeta_{p}(7 s-8) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{11} Y^{11} \\
& W_{2}(X, Y)=-1+X^{3} Y^{5} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{F_{3,2} \times \mathbb{Z}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=1$, and is of type II.

