The zeta function of Fil_{4} counting ideals

1 Presentation

Fil ${ }_{4}$ has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3}, x_{4} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3},\left[z, x_{3}\right]=x_{4},\left[x_{1}, x_{2}\right]=x_{4}\right\rangle
$$

Fil_{4} has nilpotency class 4.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathrm{Fil}_{4}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(3 s-2) \zeta_{p}(5 s-2) \zeta_{p}(7 s-4) \zeta_{p}(8 s-5) \zeta_{p}(9 s-6) \\
& \times \zeta_{p}(10 s-6) \zeta_{p}(12 s-7) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{2} Y^{4}-X^{2} Y^{5}+X^{3} Y^{5}-X^{2} Y^{6}+X^{3} Y^{6}-X^{3} Y^{7}-X^{5} Y^{9}-X^{5} Y^{10} \\
& -X^{6} Y^{11}-X^{6} Y^{12}+X^{6} Y^{13}-X^{7} Y^{13}-X^{8} Y^{13}-X^{8} Y^{14}+X^{7} Y^{15}+X^{8} Y^{15} \\
& -2 X^{9} Y^{15}+X^{8} Y^{17}+X^{9} Y^{17}-X^{10} Y^{17}+X^{9} Y^{19}+X^{10} Y^{19}+X^{11} Y^{20} \\
& +2 X^{11} Y^{21}-X^{11} Y^{22}+2 X^{12} Y^{22}+2 X^{13} Y^{23}-X^{13} Y^{24}+X^{14} Y^{24} \\
& -X^{13} Y^{25}+X^{14} Y^{25}+X^{15} Y^{25}-2 X^{14} Y^{27}+2 X^{15} Y^{27}-2 X^{15} Y^{28} \\
& +X^{16} Y^{28}-X^{15} Y^{29}-X^{16} Y^{29}+X^{17} Y^{29}-2 X^{17} Y^{30}+X^{18} Y^{30}-X^{18} Y^{31} \\
& -X^{18} Y^{32}-X^{18} Y^{33}-X^{20} Y^{35}+X^{20} Y^{36}-X^{21} Y^{36}+X^{20} Y^{37}-X^{21} Y^{37} \\
& +X^{21} Y^{38}+X^{23} Y^{42} .
\end{aligned}
$$

$\zeta_{\mathrm{Fil}_{4}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies no functional equation.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathrm{Fil}_{4}}^{\triangleleft}(s)$ is 2 , with a simple pole at $s=2$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(3 s-2) \zeta_{p}(5 s-2) \zeta_{p}(7 s-4) \zeta_{p}(8 s-5) \zeta_{p}(9 s-6) \zeta_{p}(10 s-6) \\
& \times \zeta_{p}(12 s-7) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{8} Y^{13} \\
& W_{2}(X, Y)=-1+X^{10} Y^{17} \\
& W_{3}(X, Y)=1-X^{3} Y^{6} \\
& W_{4}(X, Y)=-1+X^{2} Y^{6}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathrm{Fil}_{4}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=8 / 13$, and is of type III.

7 Notes

This was the second local ideal zeta function with no functional equation. It is also the smallest such, in terms of dimension.

