The zeta function of G_{3} counting ideals

1 Presentation

G_{3} has presentation

$$
\left\langle z, x_{1}, x_{2}, y_{1}, y_{2} \mid\left[z, x_{1}\right]=y_{1},\left[z, x_{2}\right]=y_{2}\right\rangle
$$

G_{3} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal \& Smith. It is

$$
\begin{aligned}
\zeta_{G_{3}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-6) \\
& \times \zeta_{p}(6 s-6)^{-1}
\end{aligned}
$$

$\zeta_{G_{3}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{G_{3}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-8 s} \zeta_{G_{3}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{G_{3}}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{G_{3}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

