The zeta function of G_{3} counting all subrings

1 Presentation

G_{3} has presentation

$$
\left\langle z, x_{1}, x_{2}, y_{1}, y_{2} \mid\left[z, x_{1}\right]=y_{1},\left[z, x_{2}\right]=y_{2}\right\rangle
$$

G_{3} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Dermot Grenham. It is

$$
\zeta_{G_{3}, p}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-4) \zeta_{p}(2 s-5) \zeta_{p}(3 s-6) W\left(p, p^{-s}\right)
$$

where $W(X, Y)$ is

$$
1+X^{3} Y^{2}+X^{4} Y^{2}-X^{4} Y^{3}-X^{5} Y^{3}-X^{8} Y^{5}
$$

$\zeta_{G_{3}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{G_{3}, p}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-5 s} \zeta_{G_{3}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{G_{3}}(s)$ is 3 , with a double pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-4) \zeta_{p}(2 s-5) \zeta_{p}(3 s-6) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{4} Y^{2} \\
& W_{2}(X, Y)=1-X^{4} Y^{3}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{G_{3}}(s)$ has a natural boundary at $\Re(s)=2$, and is of type II.

