The zeta function of G_3 counting all subrings

1 Presentation

 G_3 has presentation

 $\langle z, x_1, x_2, y_1, y_2 \mid [z, x_1] = y_1, [z, x_2] = y_2 \rangle$.

 G_3 has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Dermot Grenham. It is

$$\zeta_{G_3,p}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(2s-4)\zeta_p(2s-5)\zeta_p(3s-6)W(p,p^{-s})$$
 where $W(X,Y)$ is

 $1 + X^3Y^2 + X^4Y^2 - X^4Y^3 - X^5Y^3 - X^8Y^5.$

 $\zeta_{G_3}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\zeta_{G_3,p}(s)|_{p \to p^{-1}} = -p^{10-5s} \zeta_{G_3,p}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{G_3}(s)$ is 3, with a double pole at s = 3.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

 $\zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(2s-4)\zeta_p(2s-5)\zeta_p(3s-6)W_1(p,p^{-s})W_2(p,p^{-s})$ where

$$W_1(X,Y) = 1 + X^4 Y^2,$$

 $W_2(X,Y) = 1 - X^4 Y^3.$

The ghost is friendly.

6 Natural boundary

 $\zeta_{G_3}(s)$ has a natural boundary at $\Re(s) = 2$, and is of type II.