The zeta function of G_{4} counting ideals

1 Presentation

G_{4} has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[z, x_{1}\right]=y_{1},\left[z, x_{2}\right]=y_{2},\left[z, x_{3}\right]=y_{3}\right\rangle .
$$

G_{4} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Dermot Grenham. It is

$$
\begin{aligned}
\zeta_{G_{4}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-6) \zeta_{p}(5 s-10) \zeta_{p}(7 s-12) \\
& \times W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
1+X^{4} Y^{3}+X^{5} Y^{3}+X^{8} Y^{5}+X^{9} Y^{5}+X^{13} Y^{8}
$$

$\zeta_{G_{4}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{G_{4}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{21-11 s} \zeta_{G_{4}, p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{G_{4}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-6) \zeta_{p}(5 s-10) \zeta_{p}(7 s-12) W_{1}\left(p, p^{-s}\right) \\
& \times W_{2}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{9} Y^{5}, \\
& W_{2}(X, Y)=1+X^{4} Y^{3} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{G_{4}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=9 / 5$, and is of type III.

