The zeta function of G_{5} counting ideals

1 Presentation

G_{5} has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4} \left\lvert\, \begin{array}{l}
{\left[z, x_{1}\right]=y_{1},\left[z, x_{2}\right]=y_{2},} \\
{\left[z, x_{3}\right]=y_{3},\left[z, x_{4}\right]=y_{4}}
\end{array}\right.\right\rangle .
$$

G_{5} has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Dermot Grenham. It is

$$
\begin{aligned}
\zeta_{G_{5}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(3 s-8) \zeta_{p}(5 s-14) \\
& \times \zeta_{p}(7 s-18) \zeta_{p}(9 s-20) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{5} Y^{3}+X^{6} Y^{3}+X^{7} Y^{3}+X^{10} Y^{5}+X^{11} Y^{5}+2 X^{12} Y^{5}+X^{13} Y^{5}+X^{15} Y^{7} \\
& +X^{16} Y^{7}+X^{17} Y^{7}+X^{17} Y^{8}+X^{18} Y^{8}+X^{19} Y^{8}+X^{21} Y^{10}+2 X^{22} Y^{10} \\
& +X^{23} Y^{10}+X^{24} Y^{10}+X^{27} Y^{12}+X^{28} Y^{12}+X^{29} Y^{12}+X^{34} Y^{15}
\end{aligned}
$$

$\zeta_{G_{5}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{G_{5}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{36-14 s} \zeta_{G_{5}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{G_{5}}^{\triangleleft}(s)$ is 5 , with a simple pole at $s=5$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(3 s-8) \zeta_{p}(5 s-14) \zeta_{p}(7 s-18) \\
& \quad \times \zeta_{p}(9 s-20) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{13} Y^{5} \\
& W_{2}(X, Y)=1+X^{16} Y^{7} \\
& W_{3}(X, Y)=1+X^{5} Y^{3}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{G_{5}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=13 / 5$, and is of type III.

