The zeta function of $H\left(\mathcal{O}_{K_{2}}\right)$ counting ideals

1 Presentation

Let K_{2} be a quadratic number field, and $\mathcal{O}_{K_{2}}$ its ring of integers. $H\left(\mathcal{O}_{K_{2}}\right)$, the Heisenberg Lie ring over $\mathcal{O}_{K_{2}}$, has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \left\lvert\, \begin{array}{c}
{\left[x_{1}, x_{4}\right]=x_{6},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{6},} \\
{\left[x_{2}, x_{4}\right]=\alpha x_{5}+\beta x_{6}}
\end{array}\right.\right\rangle .
$$

where $K_{2}=\mathbb{Q}(\gamma)$ for γ squarefree, and

$$
\alpha x_{5}+\beta x_{6}=\left\{\begin{array}{ll}
\gamma x_{5} & \text { if } \gamma \equiv 2,3((\bmod 4)) \\
\frac{1}{4}(\gamma-1) x_{5}+x_{6} & \text { if } \gamma \equiv 1((\bmod 4))
\end{array} .\right.
$$

$H\left(\mathcal{O}_{K_{2}}\right)$ has nilpotency class 2.

2 The local zeta function

The local zeta functions were first calculated by Grunewald, Segal \& Smith. The local zeta functions depend on the behaviour of the prime p in the ring of integers of $\mathbb{Q}(\sqrt{\gamma})$. For p ramified,

$$
\zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5)
$$

For inert primes p, it is
$\zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(5 s-5) \zeta_{p}(6 s-8)\left(1+p^{4-5 s}\right)$.
For split primes p, it is

$$
\zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-4)^{2} \zeta_{p}(5 s-5) \zeta_{p}(5 s-4)^{-1}
$$

$\zeta_{H\left(\mathcal{O}_{K_{2}}\right)}^{\triangleleft}(s)$ is finitely uniform.

3 Functional equation

For p split or inert, the local zeta function satisfies the functional equation

$$
\left.\zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-10 s} \zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)
$$

The p ramified case also satisfies a functional equation,

$$
\left.\zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-12 s} \zeta_{H\left(\mathcal{O}_{K_{2}}\right), p}^{\triangleleft}(s),
$$

but this is unlikely to be of any significance in general. The functional equation arises due to the simple form of the rational function.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{H\left(\mathcal{O}_{K_{2}}\right)}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is unknown, since the local zeta functions vary with the prime.

6 Natural boundary

Since a factor of the global zeta function depends on the Dedekind zeta function of K_{2} (see below), the global zeta function has meromorphic continuation to \mathbb{C}.

7 Notes

Grunewald, Segal \& Smith observed an interesting link with the Dedekind zeta function $\zeta_{K_{2}}(s)$ of the field K_{2} :
$\zeta_{H\left(\mathcal{O}_{K_{2}}\right)}^{\triangleleft}(s)=\zeta(s) \zeta(s-1) \zeta(s-2) \zeta(s-3) \zeta(5 s-4) \zeta(5 s-5) \zeta_{K_{2}}(3 s-4) / \zeta_{K_{2}}(5 s-4)$.
In particular, since the Dedekind zeta function has meromorphic continuation to \mathbb{C}, this tells us that the global zeta function also has meromorphic continuation to \mathbb{C}.

