The zeta function of $H \times \mathbb{Z}^3$ counting ideals

1 Presentation

$H \times \mathbb{Z}^3$ has presentation

$$\langle x, y, a, b, c, z \mid [x, y] = z \rangle.$$

$H \times \mathbb{Z}^3$ has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal & Smith. It is

$$\zeta_{H \times \mathbb{Z}^3, p}(s) = \zeta_p(s)\zeta_p(s - 1)\zeta_p(s - 2)\zeta_p(s - 3)\zeta_p(s - 4)\zeta_p(3s - 5).$$

$\zeta_{H \times \mathbb{Z}^3}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left. \zeta_{H \times \mathbb{Z}^3, p}(s) \right|_{p \to p^{-1}} = p^{15 - 8s} \zeta_{H \times \mathbb{Z}^3}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{H \times \mathbb{Z}^3}(s)$ is 5, with a simple pole at $s = 5$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{H \times \mathbb{Z}^3}(s)$ has meromorphic continuation to the whole of \mathbb{C}.