The zeta function of $L(E)$ counting ideals

1 Presentation

$L(E)$ has presentation
$\left\langle\begin{array}{c|c}x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, & {\left[x_{1}, x_{4}\right]=y_{3},\left[x_{1}, x_{5}\right]=y_{1},\left[x_{1}, x_{6}\right]=x_{2},\left[x_{2}, x_{4}\right]=y_{2},} \\ x_{6}, y_{1}, y_{2}, y_{3} & {\left[x_{2}, x_{6}\right]=y_{1},\left[x_{3}, x_{4}\right]=y_{1},\left[x_{3}, x_{5}\right]=y_{3}}\end{array}\right\rangle$.
$L(E)$ has nilpotency class 2 .

2 The local zeta function

The local zeta functions for all but finitely many primes were first calculated by Christopher Voll. Let $\left|E\left(\mathbb{F}_{p}\right)\right|$ denote the number of points on the elliptic curve $Y^{2} Z=X^{3}-X Z^{2} \subseteq \mathbb{P}^{2}\left(\mathbb{F}_{p}\right)$. Then, for all but finitely many primes,

$$
\begin{aligned}
\zeta_{L(E), p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(s-4) \zeta_{p}(s-5) \zeta_{p}(s-6) \\
& \times \zeta_{p}(5 s-7) \zeta_{p}(7 s-8) \zeta_{p}(8 s-14) \zeta_{p}(9 s-18) \\
& \times\left(W_{1}\left(p, p^{-s}\right)+\left|E\left(\mathbb{F}_{p}\right)\right| W_{2}\left(p, p^{-s}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=\left(1+X^{6} Y^{7}+X^{7} Y^{7}+X^{12} Y^{8}+X^{13} Y^{8}+X^{19} Y^{15}\right)\left(1-X^{7} Y^{5}\right) \\
& W_{2}(X, Y)=X^{6} Y^{5}\left(1-Y^{2}\right)\left(1+X^{13} Y^{8}\right)
\end{aligned}
$$

$\zeta_{L(E)}^{\triangleleft}(s)$ is non-uniform.

3 Functional equation

For all but finitely many primes,

$$
\left.\zeta_{L(E), p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{36-15 s} \zeta_{L(E), p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence and order of pole are unknown since the local zeta functions at finitely many primes are unknown.

5 Ghost zeta function

The ghost zeta function is unknown, since the local zeta functions vary with the prime.

6 Natural boundary

The natural boundary of $\zeta_{L(E)}^{\triangleleft}(s)$ is unknown.

7 Notes

Despite the fact that we now have a term counting the number of points on an elliptic curve $\bmod p$, the functional equation persists. Indeed, this term plays a key part, thanks to the functional equation of the Weil zeta function.

