The zeta function of M_{3} counting all subrings

1 Presentation

M_{3} has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3}\right\rangle
$$

M_{3} has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Gareth Taylor. It is

$$
\zeta_{M_{3}, p}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(2 s-3) \zeta_{p}(3 s-5) \zeta_{p}(4 s-6) W\left(p, p^{-s}\right)
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{2} Y^{2}+X^{3} Y^{2}-X^{3} Y^{3}+X^{4} Y^{3}-X^{5} Y^{4}+X^{6} Y^{4}-X^{6} Y^{5}-X^{7} Y^{5} \\
& -X^{9} Y^{7} .
\end{aligned}
$$

$\zeta_{M_{3}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{M_{3}, p}(s)\right|_{p \rightarrow p^{-1}}=p^{6-4 s} \zeta_{M_{3}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{M_{3}}(s)$ is 2 , with a quadruple pole at $s=2$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(2 s-3) \zeta_{p}(3 s-5) \zeta_{p}(4 s-6) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{3} Y^{2}+X^{6} Y^{4} \\
& W_{2}(X, Y)=1-X Y-X^{3} Y^{3}
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{M_{3}}(s)$ has a natural boundary at $\Re(s)=3 / 2$, and is of type III.

