The zeta function of
Ms x7 M3 counting ideals

1 Presentation
M3 x7 M3 has presentation
(21, 22, w1, wa, 21, T2,y | [21,w1] = @1, [22, w2] = T2, [21, 21] = ¥, [22, 2] = ) .

M3 X7 M3 has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is
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ity s 0, (8) 18 uniform.

3 Functional equation
The local zeta function satisfies the functional equation
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4 Abscissa of convergence and order of pole

The abscissa of convergence of CZ\</113XZM3 (s) is 4, with a simple pole at s = 4.



5 Ghost zeta function

The ghost zeta function is the product over all primes of

Cp(8)Cp(s — 1)Cp(s — 2)¢p(s — 3)Cp(3s — 4)2¢,(5s — 5)(p(Ts — 4)(, (85 — 5)
X (p(9s — 6)(p(12s — 10) Wi (p,p~*)Wa(p, p~*)Wa(p,p™*)

where

Wi(X,Y) =1+ X"y,
Wa(X,Y) =1+ X°Y?,
Ws(X,Y) =1+ XY,

The ghost is friendly.

6 Natural boundary

31, 0, (8) has a natural boundary at R(s) = 14/17, and is of type IIL

7 Notes

This ideal zeta function is identical to that of gi1375, though the Lie rings them-
selves are non-isomorphic.



