The zeta function of M_{4} counting ideals

1 Presentation

M_{4} has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3}, x_{4} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3},\left[z, x_{3}\right]=x_{4}\right\rangle .
$$

M_{4} has nilpotency class 4.

2 The local zeta function

The local zeta function was first calculated by Gareth Taylor. It is

$$
\begin{aligned}
\zeta_{M_{4}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(3 s-2) \zeta_{p}(5 s-2) \zeta_{p}(7 s-4) \zeta_{p}(8 s-5) \zeta_{p}(9 s-6) \\
& \times \zeta_{p}(11 s-6) \zeta_{p}(12 s-7) \zeta_{p}(6 s-3)^{-1} W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{2} Y^{4}-X^{2} Y^{5}+X^{3} Y^{5}-X^{2} Y^{6}+2 X^{3} Y^{6}-X^{3} Y^{7}-X^{5} Y^{9}+X^{6} Y^{10} \\
& -2 X^{5} Y^{11}-X^{7} Y^{13}-X^{8} Y^{13}+X^{7} Y^{14}-X^{8} Y^{14}-X^{8} Y^{15}-X^{9} Y^{15} \\
& +X^{9} Y^{16}-X^{9} Y^{17}-X^{10} Y^{17}+2 X^{9} Y^{18}-X^{10} Y^{18}+X^{10} Y^{19}-2 X^{11} Y^{19} \\
& +X^{10} Y^{20}+X^{11} Y^{20}-X^{11} Y^{21}+X^{11} Y^{22}+X^{12} Y^{22}+X^{12} Y^{23}-X^{13} Y^{23} \\
& +X^{12} Y^{24}+X^{13} Y^{24}+2 X^{15} Y^{26}-X^{14} Y^{27}+X^{15} Y^{28}+X^{17} Y^{30}-2 X^{17} Y^{31} \\
& +X^{18} Y^{31}-X^{17} Y^{32}+X^{18} Y^{32}-X^{18} Y^{33}-X^{20} Y^{37}
\end{aligned}
$$

$\zeta_{M_{4}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{M_{4}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-14 s} \zeta_{M_{4}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{M_{4}}^{\triangleleft}(s)$ is 2 , with a simple pole at $s=2$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(3 s-2) \zeta_{p}(5 s-2) \zeta_{p}(7 s-4) \zeta_{p}(8 s-5) \zeta_{p}(9 s-6) \zeta_{p}(11 s-6) \\
& \times \zeta_{p}(12 s-7) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{8} Y^{13} \\
& W_{2}(X, Y)=-1+X^{10} Y^{18} \\
& W_{3}(X, Y)=1-X^{3} Y^{6} \\
& W_{4}(X, Y)=-1+X^{2} Y^{6}
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{M_{4}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=8 / 13$, and is of type III.

