The zeta function of M_{4} counting all subrings

1 Presentation

M_{4} has presentation

$$
\left\langle z, x_{1}, x_{2}, x_{3}, x_{4} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3},\left[z, x_{3}\right]=x_{4}\right\rangle .
$$

M_{4} has nilpotency class 4.

2 The local zeta function

The local zeta function was first calculated by Gareth Taylor. It is

$$
\begin{aligned}
\zeta_{M_{4}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(2 s-3) \zeta_{p}(2 s-4) \zeta_{p}(3 s-6) \zeta_{p}(4 s-7) \zeta_{p}(4 s-8) \\
& \times \zeta_{p}(7 s-12) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is
$1+X^{2} Y^{2}+X^{3} Y^{2}-X^{3} Y^{3}+X^{4} Y^{3}+2 X^{5} Y^{3}-2 X^{5} Y^{4}+X^{7} Y^{4}-2 X^{7} Y^{5}$
$-X^{8} Y^{5}+X^{9} Y^{5}-2 X^{9} Y^{6}-2 X^{10} Y^{6}-X^{11} Y^{6}+X^{10} Y^{7}-2 X^{12} Y^{7}-X^{13} Y^{7}$
$+X^{13} Y^{8}-X^{14} Y^{8}-X^{16} Y^{9}+X^{15} Y^{10}+X^{17} Y^{11}-X^{18} Y^{11}+X^{18} Y^{12}$
$+2 X^{19} Y^{12}-X^{21} Y^{12}+X^{20} Y^{13}+2 X^{21} Y^{13}+2 X^{22} Y^{13}-X^{22} Y^{14}$
$+X^{23} Y^{14}+2 X^{24} Y^{14}-X^{24} Y^{15}+2 X^{26} Y^{15}-2 X^{26} Y^{16}-X^{27} Y^{16}$
$+X^{28} Y^{16}-X^{28} Y^{17}-X^{29} Y^{17}-X^{31} Y^{19}$.
$\zeta_{M_{4}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{M_{4}, p}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-5 s} \zeta_{M_{4}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{M_{4}}(s)$ is $5 / 2$, with a simple pole at $s=5 / 2$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(2 s-3) \zeta_{p}(2 s-4) \zeta_{p}(3 s-6) \zeta_{p}(4 s-7) \zeta_{p}(4 s-8) \zeta_{p}(7 s-12) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{13} Y^{7} \\
& W_{2}(X, Y)=-1+X^{15} Y^{9} \\
& W_{3}(X, Y)=1-X Y-X^{3} Y^{3} .
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{M_{4}}(s)$ has a natural boundary at $\Re(s)=13 / 7$, and is of type III.

7 Notes

This calculation, a lengthy one by Gareth Taylor, is an example where the abscissa of convergence is not an integer. It is also the only calculation of a zeta function counting all subalgebras at class 4 .

