The zeta function of Q_5 counting ideals

1 Presentation

 Q_5 has presentation

 $\langle x_1,x_2,x_3,x_4,x_5 \mid [x_1,x_2]=x_3, [x_1,x_3]=x_5, [x_2,x_4]=x_5\rangle\,.$ Q_5 has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{Q_5,p}^{\triangleleft}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(3s-3)\zeta_p(5s-4).$$

 $\zeta_{Q_5}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\zeta_{Q_5,p}^{\triangleleft}(s)\big|_{p\to p^{-1}} = -p^{10-11s}\zeta_{Q_5,p}^{\triangleleft}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{Q_5}^{\lhd}(s)$ is 3, with a simple pole at s = 3.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta_{Q_5}^{\lhd}(s)$ has meromorphic continuation to the whole of \mathbb{C} .

7 Notes

This Lie ring comes from the only Lie algebra of dimension 5 not previously encountered by Luke Woodward. The subscript 5 comes from the dimension, but there isn't any significance in the letter Q.