The zeta function of Q_{5} counting all subrings

1 Presentation

Q_{5} has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \mid\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{4}\right]=x_{5}\right\rangle
$$

Q_{5} has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{Q_{5}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-4) \zeta_{p}(3 s-4) \zeta_{p}(3 s-6) \zeta_{p}(6 s-11) \\
& \times \zeta_{p}(6 s-12) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{3} Y^{2}-X^{4} Y^{3}+X^{5} Y^{3}-X^{5} Y^{4}+X^{7} Y^{4}+X^{8} Y^{4}-2 X^{7} Y^{5}-2 X^{8} Y^{5} \\
& -X^{9} Y^{5}+X^{8} Y^{6}+X^{9} Y^{6}+X^{10} Y^{6}-X^{10} Y^{7}-2 X^{11} Y^{7}-2 X^{12} Y^{7}+X^{11} Y^{8} \\
& +X^{12} Y^{8}-X^{14} Y^{8}-X^{15} Y^{8}+X^{15} Y^{10}+X^{16} Y^{10}-X^{18} Y^{10}-X^{19} Y^{10} \\
& +2 X^{18} Y^{11}+2 X^{19} Y^{11}+X^{20} Y^{11}-X^{20} Y^{12}-X^{21} Y^{12}-X^{22} Y^{12}+X^{21} Y^{13} \\
& +2 X^{22} Y^{13}+2 X^{23} Y^{13}-X^{22} Y^{14}-X^{23} Y^{14}+X^{25} Y^{14}-X^{25} Y^{15}+X^{26} Y^{15} \\
& -X^{27} Y^{16}-X^{30} Y^{18} .
\end{aligned}
$$

$\zeta_{Q_{5}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{Q_{5}, p}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-5 s} \zeta_{Q_{5}, p}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{Q_{5}}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s-4) \zeta_{p}(3 s-4) \zeta_{p}(3 s-6) \zeta_{p}(6 s-11) \zeta_{p}(6 s-12) \\
& \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right) W_{4}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{8} Y^{4} \\
& W_{2}(X, Y)=1-X^{11} Y^{6} \\
& W_{3}(X, Y)=-1-X^{3} Y^{2}+X^{6} Y^{4} \\
& W_{4}(X, Y)=1-X^{5} Y^{4}
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{Q_{5}}(s)$ has a natural boundary at $\Re(s)=2$, and is of type II.

7 Notes

This Lie ring comes from the only Lie algebra of dimension 5 not previously encountered by Luke Woodward. The subscript 5 comes from the dimension, but there isn't any significance in the letter Q.

