The zeta function of $Q_{5} \times \mathbb{Z}$ counting ideals

1 Presentation

$Q_{5} \times \mathbb{Z}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, a, x_{4}, x_{5} \mid\left[x_{1}, x_{2}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{5}\right\rangle
$$

$Q_{5} \times \mathbb{Z}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\zeta_{Q_{5} \times \mathbb{Z}, p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5)
$$

$\zeta_{Q_{5} \times \mathbb{Z}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{Q_{5} \times \mathbb{Z}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-12 s} \zeta_{Q_{5} \times \mathbb{Z}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{Q_{5} \times \mathbb{Z}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{Q_{5} \times \mathbb{Z}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

7 Notes

This Lie ring comes from the only Lie algebra of dimension 5 not previously encountered by Luke Woodward. The subscript 5 comes from the dimension, but there isn't any significance in the letter Q.

