The zeta function of $\mathbf{c} 2 \mathrm{~mm}$ counting all subgroups

1 Presentation

c2mm has presentation

$$
\left\langle x, y, m, r \mid[x, y], m^{2}, r^{2}, y^{m}=y^{-1}, x^{m}=x y, y^{r}=y^{-1}, x^{r}=x^{-1}, r^{m}=r^{-1}\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{c} 2 \mathrm{~mm}}(s)= & \left(1+8 \cdot 4^{-s}\right) \zeta(s-1)^{2}+\left(2 \cdot 2^{-s}-4^{-s}+8 \cdot 8^{-s}\right) \zeta(s) \zeta(s-1) \\
& +2^{-s} \zeta(s-1) \zeta(s-2)
\end{aligned}
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{c 2 m m}}(s)$ is 3 , with a simple pole at $s=3$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

