The zeta function of $\mathbf{c} 2 \mathrm{~mm}$ counting normal subgroups

1 Presentation

$\mathbf{c} 2 \mathbf{m m}$ has presentation

$$
\left\langle x, y, m, r \mid[x, y], m^{2}, r^{2}, y^{m}=y^{-1}, x^{m}=x y, y^{r}=y^{-1}, x^{r}=x^{-1}, r^{m}=r^{-1}\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{c} 2 \mathrm{~mm}}^{\triangleleft}(s)= & 1+5 \cdot 2^{-s}+2 \cdot 4^{-s}+2 \cdot 8^{-s}+\left(2 \cdot 2^{-s}+2 \cdot 4^{-s}\right) \zeta(s) \\
& +\left(4^{-s}-8^{-s}+2 \cdot 16^{-s}\right) \zeta(s)^{2} .
\end{aligned}
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{c} 2 \mathbf{m m}}^{\triangleleft}(s)$ is 1 , with a double pole at $s=1$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

