The zeta function of cm counting normal subgroups

1 Presentation

cm has presentation

$$
\left\langle x, y, t \mid[x, y], t^{2}, y^{t}=y^{-1}, x^{t}=x y\right\rangle
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\zeta_{\mathbf{c m}}^{\triangleleft}(s)=\left(1+2^{-s}\right) \zeta(s)+\left(2^{-s}-4^{-s}+2 \cdot 8^{-s}\right) \zeta(s)^{2} .
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{c m}}^{\triangleleft}(s)$ is 1 , with a double pole at $s=1$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

