The zeta function of $\mathfrak{g}_{6,12}$ counting ideals

1 Presentation

$\mathfrak{g}_{6,12}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{5}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{6}\right\rangle .
$$

$\mathfrak{g}_{6,12}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g} 6,12, p} & (s)= \\
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(6 s-4) \zeta_{p}(7 s-5) \\
& \times \zeta_{p}(7 s-4)^{-1}
\end{aligned}
$$

$\zeta_{\mathfrak{g} 6,12}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathrm{s}_{\mathrm{g}, 12, p}}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-13 s_{\varsigma_{\mathrm{g}, 12, p}}^{\triangleleft}(s) .}
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,12}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{g}_{6,12}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

