The zeta function of $\mathfrak{g}_{6,13}$ counting ideals

1 Presentation

$\mathfrak{g}_{6,13}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{6},\left[x_{2}, x_{5}\right]=x_{6}\right\rangle
$$

$\mathfrak{g}_{6,13}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{6,13}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-4) \zeta_{p}(5 s-6) \zeta_{p}(6 s-4) \zeta_{p}(7 s-5) \\
& \times \zeta_{p}(9 s-8) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
1+X^{3} Y^{3}-X^{4} Y^{7}-X^{7} Y^{9}-X^{8} Y^{10}-X^{11} Y^{12}+X^{12} Y^{16}+X^{15} Y^{19}
$$

$\zeta_{\mathfrak{g}_{6,13}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{6,13}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-14 s} \zeta_{\mathfrak{g}_{6,13}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{9} 6,13}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-4) \zeta_{p}(5 s-6) \zeta_{p}(6 s-4) \zeta_{p}(7 s-5) \zeta_{p}(9 s-8) \\
& \quad \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{3} Y^{3}, \\
& W_{2}(X, Y)=1-X^{8} Y^{9}, \\
& W_{3}(X, Y)=-1+X^{4} Y^{7} .
\end{aligned}
$$

The ghost is friendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{6}, 13}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=1$, and is of type II.

