The zeta function of $\mathfrak{g}_{6,14}(\gamma)$ counting ideals

1 Presentation

For $\gamma \in \mathbb{Z}$, $\gamma \neq 0$, $\mathfrak{g}_{6,14}(\gamma)$ has presentation

 $\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid [x_{1}, x_{3}] = x_{4}, [x_{1}, x_{4}] = x_{6}, [x_{2}, x_{3}] = x_{5}, [x_{2}, x_{5}] = \gamma x_{6} \right\rangle.$

 $\mathfrak{g}_{6,14}$ has nilpotency class 3.

2 The local zeta function

For all primes p not dividing $\gamma,$ the local zeta function was first calculated by Luke Woodward. It is

$$\begin{aligned} \zeta^{\triangleleft}_{\mathfrak{g}_{6,14(\gamma)},p}(s) &= \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(3s-3)\zeta_p(3s-4)\zeta_p(5s-6)\zeta_p(6s-3) \\ &\times \zeta_p(7s-5)\zeta_p(6s-6)^{-1}\zeta_p(7s-3)^{-1}. \end{aligned}$$

The case where $p \mid \gamma$ has not been calculated. $\zeta_{\mathfrak{g}_{6,14}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

If $p \nmid \gamma$, the local zeta function satisfies the functional equation

$$\zeta_{\mathfrak{g}_{6,14}(\gamma),p}^{\lhd}(s)|_{p\to p^{-1}} = p^{15-14s} \zeta_{\mathfrak{g}_{6,14}(\gamma),p}^{\lhd}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,14}(\pm 1)}^{\triangleleft}(s)$ is 3, with a simple pole at s = 3.

5 Ghost zeta function

For $\gamma = \pm 1$, this zeta function is its own ghost.

6 Natural boundary

 $\zeta_{\mathfrak{g}_{6,14}(\gamma)}^{\lhd}(s)$ has meromorphic continuation to the whole of \mathbb{C} for all γ . For $|\gamma| > 1$, this follows since all but finitely many factors are built up from local Riemann zeta functions.

7 Notes

Some of the analytic properties of $\zeta_{\mathfrak{g}_{6,14}(\gamma)}^{\triangleleft}(s)$ for $|\gamma| > 1$ are not known, due to the fact that the local factors where $p \mid \gamma$ have not been calculated. However, it can be shown that if $p \mid \gamma, \zeta_{\mathfrak{g}_{6,14}(\gamma),p}^{\triangleleft}(s)$ depends only on the power of p dividing γ . This family of Lie rings are all non isomorphic over \mathbb{Z} , but $\zeta_{2}^{\triangleleft}$.

This family of Lie rings are all non-isomorphic over \mathbb{Z} , but $\zeta_{\mathfrak{g}_{6,14}(\gamma),p}^{\triangleleft}(s) = \zeta_{\mathfrak{g}_{6,14}(-\gamma),p}^{\triangleleft}(s)$, thus providing an infinite family of pairs of isospectral Lie rings.