The zeta function of $\mathfrak{g}_{6,14}(\gamma)$ counting ideals

1 Presentation

For $\gamma \in \mathbb{Z}, \gamma \neq 0, \mathfrak{g}_{6,14}(\gamma)$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{6},\left[x_{2}, x_{3}\right]=x_{5},\left[x_{2}, x_{5}\right]=\gamma x_{6}\right\rangle
$$

$\mathfrak{g}_{6,14}$ has nilpotency class 3 .

2 The local zeta function

For all primes p not dividing γ, the local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{6,14(\gamma)}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-6) \zeta_{p}(6 s-3) \\
& \times \zeta_{p}(7 s-5) \zeta_{p}(6 s-6)^{-1} \zeta_{p}(7 s-3)^{-1} .
\end{aligned}
$$

The case where $p \mid \gamma$ has not been calculated.

$$
\zeta_{\mathfrak{g}_{6,14}}^{\triangleleft}(s) \text { is uniform. }
$$

3 Functional equation

If $p \nmid \gamma$, the local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{6,14}(\gamma), p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-14 s} \zeta_{\mathfrak{g}_{6,14}(\gamma), p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,14}(\pm 1)}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

For $\gamma= \pm 1$, this zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{g}_{6,14}(\gamma)}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C} for all γ. For $|\gamma|>1$, this follows since all but finitely many factors are built up from local Riemann zeta functions.

7 Notes

Some of the analytic properties of $\zeta_{\mathfrak{g}_{6,14}(\gamma)}^{\triangleleft}(s)$ for $|\gamma|>1$ are not known, due to the fact that the local factors where $p \mid \gamma$ have not been calculated. However, it can be shown that if $p \mid \gamma, \zeta_{\mathfrak{g}_{6,14}(\gamma), p}^{\triangleleft}(s)$ depends only on the power of p dividing γ.

This family of Lie rings are all non-isomorphic over \mathbb{Z}, but $\zeta_{\mathfrak{g}_{6,14}(\gamma), p}^{\triangleleft}(s)=$ $\zeta_{\mathfrak{g}_{6,14}(-\gamma), p}^{\triangleleft}(s)$, thus providing an infinite family of pairs of isospectral Lie rings.

