The zeta function of $\mathfrak{g}_{6,16}$ counting ideals

1 Presentation

$\mathfrak{g}_{6,16}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \left\lvert\, \begin{array}{c}
{\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5},\left[x_{1}, x_{5}\right]=x_{6},} \\
{\left[x_{2}, x_{3}\right]=x_{5},\left[x_{2}, x_{4}\right]=x_{6}}
\end{array}\right.\right\rangle .
$$

$\mathfrak{g}_{6,16}$ has nilpotency class 4 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{6,16}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-3) \zeta_{p}(5 s-4) \zeta_{p}(6 s-3) \zeta_{p}(7 s-5) \\
& \times \zeta_{p}(7 s-3)^{-1}
\end{aligned}
$$

$\zeta_{\mathfrak{g}_{6,16}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{6,16}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-17 s} \zeta_{\mathfrak{g}_{6,16}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,16}}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{g} 6,16}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

