The zeta function of $\mathfrak{g}_{6,4}$ counting ideals

1 Presentation

$\mathfrak{g}_{6,4}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{6}\right\rangle .
$$

$\mathfrak{g}_{6,4}$ has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Grunewald, Segal \& Smith. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}_{6,4}, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5) \zeta_{p}(6 s-9) \\
& \times \zeta_{p}(8 s-9)^{-1}
\end{aligned}
$$

$\zeta_{\mathfrak{g}_{6,4}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{g}_{6,4}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-10 s} \zeta_{\mathfrak{g}_{6,4}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,4}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{g}_{6,4}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

7 Notes

The Lie ring is sometimes written as $\left(F_{2,3} /\langle z\rangle\right) \cdot \mathbb{Z}$.

