The zeta function of $\mathfrak{g}_{6,6}$ counting ideals

1 Presentation

$\mathfrak{g}_{6,6}$ has presentation

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \mid\left[x_{1}, x_{2}\right]=x_{6},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{1}, x_{4}\right]=x_{5},\left[x_{2}, x_{3}\right]=x_{5}\right\rangle
$$

$\mathfrak{g}_{6,6}$ has nilpotency class 3 .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{\mathfrak{g}, 6, p}^{\triangleleft}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5) \zeta_{p}(5 s-6) \zeta_{p}(6 s-6) \\
& \times \zeta_{p}(7 s-8) \zeta_{p}(9 s-11) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{3} Y^{3}-X^{6} Y^{7}-X^{8} Y^{8}-X^{9} Y^{9}-2 X^{11} Y^{10}-X^{14} Y^{12}+X^{14} Y^{14} \\
& -X^{15} Y^{14}+X^{15} Y^{15}+X^{17} Y^{16}+X^{17} Y^{17}+X^{19} Y^{17}+X^{20} Y^{19}+X^{21} Y^{19} \\
& -X^{21} Y^{20}+X^{22} Y^{20}-X^{25} Y^{24}-X^{28} Y^{26}
\end{aligned}
$$

$\zeta_{\mathfrak{g}_{6,6}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies no functional equation.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{g}_{6,6}}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(3 s-4) \zeta_{p}(5 s-5) \zeta_{p}(5 s-6) \zeta_{p}(6 s-6) \zeta_{p}(7 s-8) \\
& \quad \times \zeta_{p}(9 s-11) W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1-X^{14} Y^{12} \\
& W_{2}(X, Y)=-1+X^{5} Y^{5}+X^{7} Y^{7}+X^{8} Y^{8}-X^{14} Y^{14}
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{\mathfrak{g}_{6,6}}^{\triangleleft}(s)$ has a natural boundary at $\Re(s)=7 / 6$, and is of type III.

