## The zeta function of p 2 gg counting normal subgroups

## 1 Presentation

p2gg has presentation

$$
\left\langle x, y, u, v \mid[x, y], u^{2}=x, v^{2}=y, x^{v}=x^{-1}, y^{u}=y^{-1},(u v)^{2}\right\rangle .
$$

## 2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\zeta_{\mathbf{p} 2 \mathbf{g g}}^{\triangleleft}(s)=1+\left(2 \cdot 2^{-s}-2 \cdot 4^{-s}\right) \zeta(s)+2^{-s}+2 \cdot 4^{-s}+\left(4^{-s}+8^{-s}\right) \zeta(s)^{2} .
$$

## 3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 2 \mathbf{g g}}^{\triangleleft}(s)$ is 1 , with a double pole at $s=1$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to $\mathbb{C}$.

