The zeta function of p 2 mg counting normal subgroups

1 Presentation

p2mg has presentation

$$
\left\langle x, y, m, t \mid[x, y], t^{2}, m^{2}=y, x^{t}=x, x^{m}=x^{-1}, y^{t}=y^{-1}, m^{t}=m^{-1}\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{p} 2 \mathrm{mg}}^{\triangleleft}(s)= & 1+5 \cdot 2^{-s}+2 \cdot 4^{-s}+\left(2 \cdot 2^{-s}+2 \cdot 4^{-s}-2 \cdot 8^{-s}\right) \zeta(s) \\
& +\left(4^{-s}+8^{-s}\right) \zeta(s)^{2} .
\end{aligned}
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 2 \mathbf{m g}}^{\triangleleft}(s)$ is 1 , with a double pole at $s=1$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

