The zeta function of p 2 mm counting all subgroups

1 Presentation

$\mathbf{p} 2 \mathbf{m m}$ has presentation

$$
\left\langle x, y, p, q \mid[x, y],[p, q], p^{2}, q^{2}, x^{p}=x, x^{q}=x^{-1}, y^{p}=y^{-1}, y^{q}=y\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{p} 2 \mathbf{m m}}(s)= & \left(1+8 \cdot 2^{-s}+4 \cdot 4^{-s}\right) \zeta(s-1)^{2}+\left(2 \cdot 2^{-s}+7 \cdot 4^{-s}\right) \zeta(s) \zeta(s-1) \\
& +2^{-s} \zeta(s-1) \zeta(s-2)
\end{aligned}
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} \mathbf{2 m m}}(s)$ is 3 , with a simple pole at $s=3$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

