The zeta function of p3m1 counting all subgroups

1 Presentation

p 3 m 1 has presentation

$$
\left\langle\begin{array}{c|c}
x, y, r, m & \begin{array}{c}
{[x, y], r^{3}, m^{2}, r^{m}=r^{-1}, x^{r}=x^{-1} y} \\
y^{r}=x^{-1}, x^{m}=x^{-1}, y^{m}=x^{-1} y
\end{array}
\end{array}\right\rangle
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{p} 3 \mathbf{m} \mathbf{1}}(s)= & \left(1+9 \cdot 3^{-s}\right) \zeta(2 s-2)+2^{-s} \zeta(s-1) L\left(s-1, \chi_{3}\right) \\
& +\left(3 \cdot 3^{-s}-2 \cdot 6^{-s}+12 \cdot 12^{-s}\right) \zeta(s) \zeta(s-1),
\end{aligned}
$$

where χ_{3} is defined by

$$
\chi_{3}(a)= \begin{cases}1 & \text { if } a \equiv 1(\quad(\bmod 3)) \\ -1 & \text { if } a \equiv-1(\quad(\bmod 3)) \\ 0 & \text { otherwise }\end{cases}
$$

and $L\left(s, \chi_{3}\right)$ is the Dirichlet L-function of χ_{3},

$$
L\left(s, \chi_{3}\right)=\sum_{n=1}^{\infty} \chi_{3}(n) n^{-s} .
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 3 \mathrm{~m} 1}(s)$ is 2 , with a simple pole at $s=2$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

