The zeta function of p3m1 counting normal subgroups

1 Presentation

p3m1 has presentation

$$
\left\langle x, y, r, m \left\lvert\, \begin{array}{c}
{[x, y], r^{3}, m^{2}, r^{m}=r^{-1}, x^{r}=x^{-1} y} \\
y^{r}=x^{-1}, x^{m}=x^{-1}, y^{m}=x^{-1} y
\end{array}\right.\right\rangle
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\zeta_{\mathbf{p} 3 \mathbf{m} \mathbf{1}}^{\triangleleft}(s)=1+2^{-s}+3 \cdot 6^{-s}+\left(6^{-s}+18^{-s}\right) \zeta(2 s)
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 3 \mathrm{~m} 1}^{\triangleleft}(s)$ is $1 / 2$, with a simple pole at $s=1 / 2$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

