The zeta function of p 4 mm counting all subgroups

1 Presentation

p 4 mm has presentation

$$
\left\langle x, y, r, m \mid[x, y], r^{4}, m^{2}, y^{r}=x^{-1}, x^{r}=y, x^{m}=y, r^{m}=r^{-1}\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\begin{aligned}
\zeta_{\mathbf{p} 4 \mathbf{m m}}(s)= & \left(1+4 \cdot 2^{-s}+4 \cdot 4^{-s}\right) \zeta(2 s-2) \\
& +\left(4 \cdot 4^{-s}+5 \cdot 8^{-s}+8 \cdot 16^{-s}\right) \zeta(s) \zeta(s-1) \\
& +\left(2 \cdot 2^{-s}+8 \cdot 4^{-s}+4 \cdot 8^{-s}\right) \zeta(s-1)^{2}+4^{-s} \zeta(s-1) \zeta(s-2) \\
& +2^{-s} \zeta(s-1) L\left(s-1, \chi_{4}\right),
\end{aligned}
$$

where χ_{4} is defined by

$$
\chi_{4}(a)= \begin{cases}1 & \text { if } a \equiv 1(\quad(\bmod 4)) \\ -1 & \text { if } a \equiv-1(\quad(\bmod 4)) \\ 0 & \text { otherwise }\end{cases}
$$

and $L\left(s, \chi_{4}\right)$ is the Dirichlet L-function of χ_{4},

$$
L\left(s, \chi_{4}\right)=\sum_{n=1}^{\infty} \chi_{4}(n) n^{-s} .
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 4 \mathbf{m m}}(s)$ is 3 , with a simple pole at $s=3$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

