The zeta function of p6mm counting normal subgroups

1 Presentation

p 6 mm has presentation

$$
\left\langle x, y, r, m \left\lvert\, \begin{array}{c}
{[x, y], r^{6}, m^{2}, y^{r}=x^{-1} y, x^{r}=y, x^{r}=y,} \\
x^{m}=x^{-1}, y^{m}=x^{-1} y, r^{m}=r^{-1} y
\end{array}\right.\right\rangle .
$$

2 The zeta function itself

The zeta function was calculated by du Sautoy, McDermott and Smith. It is

$$
\zeta_{\mathbf{p} 6 \mathrm{~mm}}^{\triangleleft}(s)=1+3 \cdot 2^{-s}+4^{-s}+2 \cdot 6^{-s}+12^{-s}+24^{-s}+\left(12^{-s}+36^{-s}\right) \zeta(2 s)
$$

3 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathbf{p} 6 \mathrm{~mm}}^{\triangleleft}(s)$ is $1 / 2$, with a simple pole at $s=1 / 2$. Since this group is a finite extension of a free abelian group, its zeta function has meromorphic continuation to \mathbb{C}.

