The zeta function of $\mathfrak{s l}_{2}(\mathbb{Z})$ counting all subrings

1 Presentation

$\mathfrak{s l}_{2}(\mathbb{Z})$ has presentation

$$
\langle f, e, h \mid[h, e]=2 e,[h, f]=-2 f,[e, f]=h\rangle .
$$

$\mathfrak{s l}_{2}(\mathbb{Z})$ is insoluble.

2 The local zeta function

The local zeta functions were calculated by Marcus du Sautoy using calculations by Ishai Ilani $(p \neq 2)$, Marcus du Sautoy and Gareth Taylor (all p) and Juliette White (all p). For $p \neq 2$,

$$
\zeta_{\mathfrak{s l}_{2}(\mathbb{Z}), p}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(2 s-1) \zeta_{p}(2 s-2) \zeta_{p}(3 s-1)^{-1}
$$

For $p=2$,

$$
\zeta_{\mathfrak{s l}_{2}(\mathbb{Z}), 2}(s)=\zeta_{2}(s) \zeta_{2}(s-1) \zeta_{2}(2 s-1) \zeta_{2}(2 s-2)\left(1+6.2^{-2 s}-8.2^{-3 s}\right)
$$

3 Functional equation

For $p \neq 2$, the local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{S l}_{2}(\mathbb{Z}), p}(s)\right|_{p \rightarrow p^{-1}}=-p^{3-3 s} \zeta_{\mathfrak{S l}_{2}(\mathbb{Z}), p}(s) .
$$

$\zeta_{\mathfrak{s l}_{2}(\mathbb{Z}), 2}(s)$ satisfies no functional equation.

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{s l}_{2}(\mathbb{Z})}(s)$ is 2 , with a simple pole at $s=2$.

5 Ghost zeta function

The ghost zeta function is unknown since the zeta functions vary with the prime.

6 Natural boundary

$\zeta_{\mathfrak{s l}_{2}(\mathbb{Z})}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

