The zeta function of $\mathfrak{t r}_{3}(\mathbb{Z})$ counting ideals

1 Introduction

$\mathfrak{t r}_{3}(\mathbb{Z})$ is the Lie ring of upper-triangular 3×3 matrices over \mathbb{Z}.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\zeta_{\mathfrak{t r}_{3}(\mathbb{Z}), p}^{\triangleleft}(s)=\zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(2 s)^{2} \zeta_{p}(5 s) .
$$

$\zeta_{\mathfrak{t r}_{3}(\mathbb{Z})}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{\mathfrak{t r}_{3}(\mathbb{Z}), p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{3-12 s} \zeta_{\mathfrak{t r}_{3}(\mathbb{Z}), p}^{\triangleleft}(s) .
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\operatorname{tr}_{3}(\mathbb{Z})}^{\triangleleft}(s)$ is 3 , with a simple pole at $s=3$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{\mathfrak{t r}_{3}(\mathbb{Z})}^{\triangleleft}(s)$ has meromorphic continuation to \mathbb{C}.

