The zeta function of $\mathfrak{tr}_3(\mathbb{Z})$ counting ideals

1 Introduction

 $\mathfrak{tr}_3(\mathbb{Z})$ is the Lie ring of upper-triangular 3×3 matrices over \mathbb{Z} .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{\mathfrak{tr}_3(\mathbb{Z}),p}^{\triangleleft}(s) = \zeta_p(s)\zeta_p(s-1)\zeta_p(s-2)\zeta_p(2s)^2\zeta_p(5s).$$

 $\zeta^{\triangleleft}_{\mathfrak{tr}_3(\mathbb{Z})}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left.\zeta^{\triangleleft}_{\mathfrak{tr}_3(\mathbb{Z}),p}(s)\right|_{p\to p^{-1}}=p^{3-12s}\zeta^{\triangleleft}_{\mathfrak{tr}_3(\mathbb{Z}),p}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{tr}_3(\mathbb{Z})}^{\triangleleft}(s)$ is 3, with a simple pole at s = 3.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta^{\triangleleft}_{\mathfrak{tr}_{\mathfrak{I}}(\mathbb{Z})}(s)$ has meromorphic continuation to \mathbb{C} .