The zeta function of $\mathfrak{tr}_4(\mathbb{Z})$ counting ideals

1 Introduction

 $\mathfrak{tr}_4(\mathbb{Z})$ is the Lie ring of upper-triangular 4×4 matrices over \mathbb{Z} .

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$\zeta_{\mathfrak{tr}_4(\mathbb{Z}),p}^{\triangleleft}(s) = \zeta_p(s)^2 \zeta_p(s-1) \zeta_p(s-2) \zeta_p(s-3) \zeta_p(2s)^2 \zeta_p(5s) \zeta_p(8s) \zeta_p(9s)$$
$$\times W(p, p^{-s})$$

where W(X, Y) is

$$1 - Y + Y^2 - Y^3 + Y^4.$$

 $\zeta^{\triangleleft}_{\mathfrak{tr}_4(\mathbb{Z})}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$\left.\zeta_{\mathfrak{tr}_4(\mathbb{Z}),p}^{\triangleleft}(s)\right|_{p\to p^{-1}} = p^{6-27s}\zeta_{\mathfrak{tr}_4(\mathbb{Z}),p}^{\triangleleft}(s).$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{\mathfrak{tr}_4(\mathbb{Z})}^{\triangleleft}(s)$ is 4, with a simple pole at s = 4.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

 $\zeta^{\lhd}_{\mathfrak{tr}_4(\mathbb{Z})}(s)$ has meromorphic continuation to \mathbb{C} .